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ABSTRACT 

The steady flow of a highly r a re f i ed  ionized gas through a channel with 

a magnetic f i e l d  normal t o  t h e  channel w a l l  i s  studied. The so lu t ion  i s  ob- 

t a i n e d  by a Monte Carlo procedure. This method cons i s t s  of following sample 

ions  through t h e  channel. By t a l l y i n g  p rope r t i e s  of t hese  ions  as they pass 

scoring c ross  sec t ions  of t h e  channel, t h e  various l o c a l  p rope r t i e s  of t h e  

flows such as density,  mass flows, energies, and w a l l  shear  stress are ob- 

tained. These results f o r  t h e  small magnetic f i e l d  cases were compared with 

t h e  l i m i t i n g  a n a l y t i c a l  so lu t ions  f o r  no magnetic f i e l d  and were i n  good 

agreement with them. 

I. INTFIODUCTION 

The equations t o  be solved f o r  the flow of a f u l l y  ionized c o l l i s i o n l e s s  

r a r e f i e d  gas through a channel are complex and not r e a d i l y  so lvable  by t h e  

usua l  a n a l y t i c a l  procedures, Pai (1962). 

i n  t h e  present  case t o  obta in  t h e  various f l o w  c h a r a c t e r i s t i c s  and t o  g ive  

The Monte Carlo procedure w a s  used 

an i n s i g h t  i n t o  t h e  behavior of t he  f l o w  of a c o l l i s i o n l e s s  rarefied f u l l y  

ionized gas through a f la t  p l a t e  channel. These so lu t ions  can be used f o r  

comparison with o the r  techniques and a l so  t o  i l l u s t r a t e  the use of t h e  Monte 

Carlo technique f o r  s i m i l a r  types of problems. 

The present model cons i s t s  of a f i n i t e  l eng th  channel of i n f i n i t e  depth 

as shown i n  Fig. 1. There i s  a uniform magnetic f i e l d  B2 no& t o  t h e  

channel w a l l .  The l e f t  and r i g h t  end of t h e  channel are open t o  r e se rvo i r s  
TM X-52033 
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containing a f u l l y  ion ized  gas i n  a Maxwellian d i s t r i b u t i o n  of v e l o c i t i e s  at  

t h e  same temperatures but d i f f e r e n t  dens i t i e s  and pressures.  The mean free 

. path  i n  the gas i s  considered l a r g e  compared w i t h  t h e  dimensions of the 

channel so t h a t  i n t e r i o n i c  c o l l i s i o n  e f f e c t s  can be neglected i n  the channel. 

The only c o l l i s i o n s  i n s i d e  t h e  channel w i l l  be by t h e  ions  with the w a l l s .  

The ions  are assumed t o  be r e f l e c t e d  from t h e  w a l l s  d i f f u s e l y  with a ve loc i ty  

d i s t r i b u t i o n  based on t h e  temperature of the  w a l l .  It i s  assumed tha t  t h e  

w a l l  is  a t  the same temperature as the reservoi rs .  

the  molecule i s  assumed unchanged by the w a l l  r e f l ec t ion .  

can be r e a d i l y  assumed using a similar Monte Carlo procedure. 

gas can be considered t o  be composed of pos i t i ve ,  negative, and n e u t r a l  mole- 

cules. I n  t h e  present model each specie can be t r e a t e d  independently s i n c e  

t h e  i n t e r a c t i o n  between them i s  considered negl ig ib le ,  then these  so lu t ions  

can be summed t o  g ive  t h e  o v e r a l l  results. 

The e l e c t r i c a l  charge of 

Other conditions 

The innized 

The Monte Carlo procedure cons i s t s  of following t h e  probable h i s t o r y  of 

a sample charged ion  through t h e  channel. By use of  a high-speed e l e c t r o n i c  

computor a l a r g e  number of t hese  sample h i s t o r i e s  can be ca r r i ed  ou t  i n  a 

s h o r t  t i m e  and from these  the  des i r ed  mean q u a n t i t i e s  are obtained. This 

method follows the techniques used i n  solving thermal r ad ia t ion  problems by 

Monte Carlo as described by Howell and Perlmutter (1963). 

The mass through-flow p r o f i l e  and t ransverse  mass flow, the  l o c a l  den- 

s i t y ,  and temperatures as w e l l  as t h e  wall shear stress d i s t r i b u t i o n  are 

given. These results are obtained by scoring various proper t ies  of the  mole- 

cu les  as they  pass d i f f e r e n t  c ross  sections of the channel. The so lu t ion  f o r  

. t h e  case of n e u t r a l  molecules o r  the case of neg l ig ib l e  magnetic f i e l d  has 

been obtained a n a l y t i c a l l y  by Perlmutter (1964) and i s  used as a l i m i t i n g  

case check on t h e  Monte Carlo results. 
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SAMPLE ION 

(Fig. 1) cons i s t s  of two p l a t e s  whose length  divided by t h e  

i s  1. The p l a t e s  a r e  i n f i n i t e  i n  depth. There i s  a magnetic 

f i e l d  of s t r eng th  BZ normal t o  t h e  plates. The gas i n  t h e  l e f t  r e se rvo i r  

has a dens i ty  % while t h e  r i g h t  reservoi r  i s  a t  41. The molecules are of 

mass M and charge e. A l l  of t h e  sample ion  h i s t o r i e s  begin a t  t h e  channel 

entrance x1 = 0. The number of molecules CL t h a t  each sample molecule en- 

t e r i n g  from t h e  l e f t  r e se rvo i r  represents i s  given by 

% CL = E 
L 

where mL is  t h e  mass flow rate pe r  unit  area, 

channel (Kennard (1939)),  NL 

entrance area pe r  u n i t  t i m e .  

= %/2n1/'j3, en te r ing  t h e  

is  t h e  number of t r i a l  molecules used per u n i t  

The Monte Carlo flow char t  used i n  t h e  present c a l c u l a t i o n s - i s  shown i n  

Fig. 2. The pos i t ion  xZi representing t h e  he ight  a t  which t h e  sample ion  

e n t e r s  t h e  channel i s  given by R, where R i s  a randomly chosen number be- 

tween 0 and l. T h i s  i s  because t h e  molecules are equal ly  l i k e l y  t o  e n t e r  

t h e  channel a t  any value of 

i on  Vi, and t h e  angles Jr  and 8 which determine i t s  d i r ec t ion ,  as derived 

i n  t h e  appendix A (Eq. (A5) o r  ( A g ) ) ,  can be obtained from 

x2. The magnitude of t h e  speed of t h e  sample 

% = sin2g ( 2 4  

where each R represents  a new random number, v i s  t h e  dimensionless 

ve loc i ty  given i n  t h e  nomenclatureandranges from 0 t o  m, Jr  i s  t h e  cone angle 

from 0 t o  n/2, and 8 is  t h e  po la r  angle from 0 t o  Zn. Then t h e  i n i t i a l  
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components of ve loc i ty  of t h e  sample molecule t h a t  e n t e r s  t h e  channel from t h e  

l e f t  r e s e r v o i r  are 

v s  = v cos Jr 

vZ = v s i n  Jr s i n  8 

v s  = v s in  JI cos 8 

( 3 4  

(3b) 

( 3 4  

By choosing random numbers between 0 and 1, w e  can obta in  a ve loc i ty  and 

d i r e c t i o n  f o r  t h e  molecule en ter ing  t h e  channel t h a t ,  when taken over a l a r g e  

number of trials, w i l l  s a t i s f y  t h e  correct t h e o r e t i c a l  d i s t r i b u t i o n  as given 

i n  Eq. (A3). 

( ) refers t o  a p a r t i c u l a r  l oca t ion  i n  the  flow chart. 

t h e  channel, t h e i r  behavior w i l l  be determined by t h e  r e l a t i o n s  ' (Pa t te rson  

These v e l o c i t i e s  are determined at (1) i n  t h e  flow cha r t ,  where 

After t h e  ions  e n t e r  

(1962) 1 

which are t h e  equations of motion f o r  an ion  through a magnetic f i e l d .  The T 

i s  t h e  nondimensional time given i n  t h e  nomenclature. These equations can be 

solved t o  g ive  t h e  ve loc i ty  components as a func t ion  of t i m e  

Vi = V l i  COS T - v3i s i n  T 

v2 = v2i  

v3 = vli s i n  T + v3i cos T 

where t h e  subsc r ip t  i r e f e r s  t o  t i m e  T = 0. 

The pos i t i ons  of t h e  molecule as a func t ion  of time can be obtained from 

(XI - xli) = v1i s in  T + v3i( cos T - 1) 
(X2 - X z i )  = V2iT 

( 6 4  

(6b) 
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(x3 - x3i) = v 3i s i n  T + vl i ( l  - cos T) ( 6 4  

The ion  will travel i n  a h e l i c a l  path t h a t  i s  c i r c u l a r  i n  t h e  

w i l l  move with a constant component of ve loc i ty  i n  t h e  

r ad ius  of t h e  c i r c u l a r  ion  path i n  t h e  xl,x3-plane, c a l l e d  t h e  gyromagnetic 

rad ius ,  divided by t h e  d is tance  between t h e  p l a t e s  i s  

x1,x3-plane and 

?x2-direction. The 

The average gyromagnetic rad ius  divided by t h e  width of t h e  channel f o r  all 

t h e  molecules based on conditions i n  the l e f t  r e se rvo i r  i s  

which i s  equal t o  t h e  Larmor rad’ius divided by t h e  width of t h e  channel. The 

term vx 2 

of t h e  ion  i s  given i n  appendix B. 

u n t i l  it leaves from e i t h e r  end and then a new ion  is  s t a r t ed .  This i s  con- 

t inued  u n t i l  a p rese t  number of h i s t o r i e s  a r e  c a r r i e d  out. 

111. MEAN FLOW VALUES FROM SAMpL;E HISTORIES 

is  equal t o  /GafM d3v. The d e t a i l s  of t h e  remaining h i s t o r y  

The ion  is  followed through t h e  channel 

A. Transport of Some Ion Property Q i n  Channel 

A t  some poin t  along t h e  channel l eng th  x1 = e, t h e  channel height i s  

divided i n t o  increments of width 

across  t h e  channel height were used. Increment p i s  given by 

P = ( ~ 2 / & 2 ) i n t e g e r  + 1. 

incremental area Ax2 is then given by 

Axz. I n  t h e  present case 20 increments 

The ne t  amount of Q that is being ca r r i ed  across  t h e  

S+ S -  S +  S -  

3 
c ~ c  Q - 7  Q R Q-1 Q ( - >L,E,p + c. b , S , p  1 - ’!? = JQVlf d V ( 9 )  

D k 2  ax2  M 

where t h e  subsc r ip t s  L and R denote t h e  sample molecule o r i g i n  i n  t h e  l e f t  

o r  r i g h t  reservoi r .  The terms S+ and S- are t h e  number of sample 
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molecules passing through t h e  increment i n  t h e  positive o r  negative 

xl d i r ec t ions ,  respectively.  Subs t i tu t ing  from t h e  d e f i n i t i o n  of C from 

- Eq. (1) w e  ob ta in  

- - 
When m~ = %, pVlQ = pVl\=mR. Subtracting t h i s  from Eq. (10) gives 

"he above operation is  poss ib le  because t h e r e  is  no i n t e r a c t i o n  between t h e  
- *  - I  

molecules and therefore  [(t' Q - f $L,c,pl/JJ h 2 )  i s  independent 

of IUL. A similar r e l a t i o n  holds f o r  t h e  sample ions  en te r ing  from t h e  r i g h t  

reservoi r .  

1. Mass flow p r o f i l e  through channel. - Since  t h e  l o c a l  mass flow through 

t h e  channel i s  given by pul = M f Vlf d3V, Q i n  Eq. (10) f o r  t h i s  case 

i s  1. The u l  i s  t h e  l o c a l  mean through-flow ve loc i ty  i n  t h e  xl-direction 

and i s  equal t o  / V l f  d3V. The numerical ca l cu la t ions  showed tha$ t h e  

results f o r  [(s+ - s - ) L , ~ , ~ ]  J(%D were equal a t  x l  and 2 - xl. 

(NRD h x 2 ) .  Using these  r e l a t i o n s  i n  Eq. (10) g ives  

Rela t ing  t h i s  t o  Eq. (11) shows t h a t  pu1 = 0, t h a t  is, when the two 
q = m R  

r e s e r v o i r s  are at t h e  same condition there i s  no n e t  through-flow anywhere 

i n  the channel. Equation (12) shows tha t ,  f o r  t h i s  case, it is  only necessary 

t o  consider t h e  sample molecules or ig ina t ing  i n  t h e  l e f t  r e se rvo i r  t o  obtain 

t h e  complete solution. The axial mass p r o f i l e  r e s u l t s  are shown i n  Fig. 3. 



7 

The curves are symmetric between t h e  upper and lower halves of t h e  channel 

(pul)x2 = ( P U ~ ) ~ - ~  

channel ( ~ 1 )  X1 = ( ~ u 1 ) ~ - ~ ~ -  

and a l s o  symmetric around t h e  f r o n t  and back ends of t h e  
2 

The s o l i d  l i n e ,  which i s  t h e  ana ly t i ca l  so lu t ion  f o r  ra = - (Perlmutter,  

(1964)) i s  i n  good agreement with the Monte Carlo results f o r  ra of 1OOO. 

Thus, f o r  t h i s  value of ra the  so lu t ion  is  c lose  t o  t h e  l i m i t i n g  case f o r  

no magnetic f i e l d  f o r  t h i s  range of 2's .  Also t h e  f a c t  t h a t  t h e  r e s u l t s  

are i n  agreement f o r  t h e  two d i f f e ren t  methods ind ica t e s  t h e  v a l i d i t y  of 

the  Monte Carlo procedure. 

nn ~ ~ i e  average ~ S S  throiia t l i e  chailiizl ~ ~ i i  be ~ k t ~ i n e f i  f r ~ ~  ~ q .  (12)  

by summing t h e  results f o r  each increment and then d iv id ing  by t h e  number of 

increments: 

i s  the  t o t a l  number of trial molecules leaving t h e  r i g h t  L? 2 ,P where (S') 

end of t h e  channel through t h e  increment 

Fig. 4. It can be seen t h a t  as ra decreases, t h e  mass flow through t h e  

channel decreases. This is  t r u e  because, f o r  s m a l l  values of raJ t h e  

Ax2. These r e s u l t s  are shown i n  

charged molecules are trapped t o  r o t a t e  i n  s m a l l  c i r c u l a r  o r b i t s  around 

t h e  magnetic l i n e s  of force. 

2. Transverse mass flow. - The flow i n  t h e  x3 o r  depth d i r e c t i o n  is  
fa 

given by pug = M 

The numerical ca l cu la t ions  showed t h a t  the r e s u l t s  f o r  

V g f  dV; then i n  Eq. (10) f o r  t h i s  case Q = V3/V1. 

r s+ S- 1 

were the same a t  xl and 2 - xl. Following the same procedure as followed 

before,  (pu3)mL,mR = 0, and w e  obtain 
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S- 1 

As f o r  pul, t h e  flow pu3 i s  symmetric around t h e  midplane p a r a l l e l  t o  t h e  

channel w a l l s  pusJx2 = p ~ 3 , 1 , ~ ~  and it is  a l so  symmetrical around t h e  mid- 

plane between t h e  f r o n t  and rear ends of t h e  channel, pug = pu3,2-xl. 7 1  

The average t ransverse  flow through t h e  channel can then be obtained by 

summing the flow across  t h e  channel and d iv id ing  by the  channel height: 

% - m R  NLD 

These results are shown i n  Fig. 5. 

t h e  t r a n s v e r s e  flow i s  zero. The t ransverse  flow begins t o  decrease f o r  

l a r g e  values of l/ra corresponding t o  l a r g e  magnetic f i e l d s .  This i s  t r u e  

When t h e r e  i s  no magnetic f i e l d  l/ra = 0 

because t h e  molecules are making o r b i t s  of very small r a d i i  around t h e  mag- 

n e t i c  l i n e s  of force ,  thereby preventing any l a r g e  mass flows. The results 

i n d i c a t e  t h a t  t h e  maximum value of t h e  t ransverse  flow occurs i n  t h e  middle of 

t h e  channel f o r  values of ra of approximately half  the channel length. The 

l a r g e s t  t r ansve r se  flows occur i n  t h e  smallest l eng th  channels, 2 = 0.1. 

3. Density p ro f i l e .  - The l o c a l  density i s  given by p = M sf dV. Then 
r 

Q = l / V l  i n  Eq. (10). The numerical ca lcu la t ions  obeyed t h e  r e l a t i o n  

D Ax2N 2-\/;? r-l 
L a 

Then from symmetry 
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= p ~ ,  and w e  
%=mR 

Following t h e  same procedure as before, w e  f i n d  t h a t  

ob ta in  

These r e s u l t s  are shown i n  Fig. 6. The l i m i t i n g  so lu t ion  of zero mag- 

n e t i c  f ie ld  agreed w e l l  with t h e  Monte Carlo so lu t ion  f o r  

ra 

ra = 1000. As 

becomes smaller, t h e  d e n s i t i e s  i n  the  channel near t h e  r e se rvo i r s  approach 

t h e  dens i ty  of t h e  r e se rvo i r  more closely. 

around t h e  midplane 

The d e n s i t i e s  are symmetrical 

x2 = 1/2 

and are r e l a t e d  around t h e  midplane xl = 2/2 by 

4. Local k i n e t i c  energy. - The k ine t ic  energy a t  some loca t ion  i s  given 

by pE = ( M / 2 v  V2f dV. &en Q i n  Eq. (10) f o r  t h i s  case i s  V2/2Vl. The 

numerical ca lcu la t ions  obeyed t h e  r e l a t ion  

Then following t h e  same procedure as before w e  f i n d  t h a t  (pE) %=mR = 38d484, 

which i s  t h e  k i n e t i c  energy i n  t h e  reservoi r  (Perlmutter (1964)) and t h e  

Solu t ion  reduces t o  
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- Again t h e r e  i s  symmetry around t h e  midplane x2 = 1/2 of t h e  channel, 

while around t h e  plane x i  = 2/2 

L 4 , - 4 1  

of the  channel, 

For  zero magnetic f i e l d  (Perlmutter (1964))  it w a s  shown t h a t  

( p E ) r a s  = 3p/4P2. For t h i s  case 

"he results p l o t t e d  i n  Fig. 6 show t h a t  f o r  smaller values of ra 

(25) 

(23b) 

t h e  

value of (4fi2/3) (pE) i s  no longer equal t o  

bu t  has decreased near t h e  entrance of the channel and increased near t h e  

ex i t .  

magnetic r ad ius  and so d i f f u s e  more readi ly  down t h e  channel than t h e  slower 

moving molecules. 

p as f o r  t h e  nonmagnetic case, 

This i s  t r u e  because t h e  higher ve loc i ty  molecules have a l a r g e r  gyro- 

€3. Col l i s ion  Rate With Walls 

The mass flow rate inc ident  per  u n i t  area on t h e  upper w a l l  and then 

r e f l e c t e d  can be obtained as follows: The channel w a l l  i s  divided i n t o  i n -  

crements of width Axl. 

t h e  channel sur face  were used. A t  a p a r t i c u l a r  increment q, given by 

q = (xl/M1)integer + 1, t h e  number of sample molecules c o l l i d i n g  i n t o  t h i s  

I n  t h e  present  ca l cu la t ions ,  20 increments along 
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increment i s  scored: 

This can be rewritten as 

From t h e  numerical ca lcu la t ions  it w a s  noted t h a t  

Since by symmetry 

w e  f i n d  that (h) IUJ,=DR = mR and Eq. (26) becomes 

I These results are shown i n  Fig. 7. Again t h e r e  i s  good agreement between t h e  

l i m i t i n g  a n a l y t i c a l  so lu t ion  f o r  

ra = 1000. 

w a l l  near  t h e  r e se rvo i r  i s  c lose r  t o  t h e  mass flow i n t o  t h e  reservoi r .  

results are t h e  same f o r  t h e  upper and lower w a l l  and are related around t h e  

ra = CQ and t h e  Monte Carlo so lu t ion  f o r  

For t h e  smaller values of ra t h e  mass flow r e f l e c t e d  from t h e  

These 

channel midplane x1 = 2/2 by 

C. Shear S t r e s s  a t  W a l l  

The shear stress on t h e  surface i n  t h e  x l -d i r ec t ion  i s  given by 
I 1  

= (-pV1V2),, where V 1  i s  t h e  random component of ve loc i ty  V = VI + u, - PXl? x2 

where S V ' f  d3V = 0. Since u2 a t  t h e  w a l l  i s  zero then ( - p V i V & i s  equal 
- 

t o  (-pVIVz)w. Since t h e  ions  are re f l ec t ed  d i f f u s e l y  they do not cont r ibu te  
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t o  t h e  sur face  shear so w e  obtain 

As before,  from t h e  numerical calculations,  

and proceeding i n  a similar manner, w e  f i nd  (pV V ) 

from Eq. (32) 

= 0 and obta in  
1 2 w , q = m R  

AxlNLDra ( -’ (34) 

These r e s u l t s  a r e  shown i n  Fig. 8 and are t h e  same on t h e  upper and l o w e r .  

walls. The results are a l s o  symmetrical around x1/2 = 0.5. The shear  stress 

f o r  ra 

t ion .  The shear s t r e s s  i s  seen t o  decrease f o r  smaller values of r,. Since 

t h i s  corresponds t o  smaller values of  mass flow through t h e  channel, t h i s  re- 

sult would be expected. 

IV. coNcLusIoNs 

of 1000 i s  seen t o  agree well  with the  nonmagnetic a n a l y t i c a l  solu- 

The e f f e c t  of t h e  increas ing  magnetic f i e l d  i s  t o  reduce t h e  mass flow 

Of t h e  ions through t h e  channel. 

mass ion  flow t o  occur perpendicular t o  t h e  through-flow and p a r a l l e l  t o  t h e  

channel w a l l s .  This t r ansve r se  flow reaches a maximum and then decreases as 

t h e  magnetic f i e l d  becomes stronger. The decrease i s  due t o  t h e  s t rong  mag- 

n e t i c  f i e l d  t rapping  t h e  charged pa r t i c l e s .  

The magnetic f i e l d  a l s o  causes a t ransverse  
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The Monte Carlo so lu t ion  worked w e l l  with t h i s  problem. The major draw- 

back w a s  t h e  l a r g e  amount of computer t i m e  necessary t o  run the analysis .  

Generally,  200,000 sample ions  were needed f o r  each case t o  reduce the  

s c a t t e r  i n  t h e  r e su l t s .  A lesser number of trials gave poin ts  f a l l i n g  

around t h e  co r rec t  so lu t ion  b u t  with l a r g e r  s ca t t e r .  The trials were run 

on an IBM 7094 computer and each case ran approximately 45 minutes. The 

amount of t h e  each sample ion ran would increase  with longer channels and 

h igher  magnetic f ie lds .  The s c a t t e r  i s  decreased i f  a l a r g e  number of sample 

ions  are t a l l i e d  a t  a p a r t i c u l a r  posi t ion s o  t h a t  more meaningful s t a t i s t i c a l  

averages can be obtained. More advanced techniques,  such as s p l i t t i n g  o r  

Russian r o u l e t t e ,  could be used t o  decrease t h e  computing t i m e .  With t h i s  

Monte Carlo procedure, o the r  boundar;. conditions can r ead i ly  be used and t h e  

method could be extended t o  include i n t e r i o n i c  co l l i s ions .  

APPENDIX A - ENTERING I O N  SPEED AND DIRECTION 

The number of molecules moving i n  t h e  xl-direction f$ d3V, where 

3 d V = dVl dV2 dV3, with t h e  ve loc i ty  i n  t h e  range 

Maxwellian d i s t r ibu t ion ,  i s  given by 

d3V f o r  an assumed 

2 2  fi d3V = pLp3 e-p dV1 dV2 dVg 77% 
2 where V2 = V1 + $ + V:. 

u n i t  t i m e  pe r  u n i t  area i n  t h e  incremental ve loc i ty  range of 

l e f t  r e se rvo i r  i s  given by dq/M = Vif; d3V. If t h i s  is .  i n t eg ra t ed  over V1 

from 0 t o  w, V2 and V 3  from -m t o  sm w e  ob ta in  f o r  t h e  t o t a l  flow 

enter ing  t h e  channel mL = p ~ / ( 2 p n ~ / ~ ) .  

t h e  ions enter ing t h e  channel from the  l e f t  r e se rvo i r  then can be wr i t ten  as 

The number of molecules en ter ing  t h e  channel pe r  

d3V from t h e  

The d i s t r i b u t i o n  of v e l o c i t i e s  of 

+ VlfM dV = - 
This can be transformed i n t o  spher ica l  coordinates where VI = V cos @; 
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V2 = V s i n  J I  s i n  8 ;  V3 = V s i n  IJI cos 8, where 

measured from t h e  xl-axis, and 6 is  the polar  angle measured from t h e  

x1,x3-plane. 

Jr i s  t h e  cone angle 

Then (A2) can be wr i t t en  as 

'lf' - - V3e-p2V2 cos Jr s i n  Jr dJr de dV TnL x 

This g ives  t h e  f r a c t i o n  of all t h e  molecules i n  t h e  ranges dV de dq enter ing  

t h e  channel. "he f r a c t i o n  of molecules t h a t  are i n  t h e  ve loc i ty  range dV i s  

given by taking t h e  marginal d i s t r i b u t i o n  

g r a t i n g  ( ~ 3 )  over 6 from o t o  231 and from o t o  31/2 t o  g ive  

fM,v which i s  obtained by i n t e -  

S imi la r ly ,  t h e  marginal frequencies f o r  8 and Jr  after i n t e g r a t i n g  over V 

from 0 t o  m are 

L- can p ick  from t h i s  d i s t r i b u t i o n  by s e t t i n g  t h e  random number R equal 
X 

t o  t h e  cumulative d i s t r i b u t i o n  function, R = f s ,  dx' as i n  Howell and 

Perlmutter (1963). Then t h e  machine can p ick  a random number R and so lve  

-a, 

f o r  t h e  random va r i ab le  x from t h e  above r e l a t ion .  For Eqs. (A4a), (A4b), 

and ( A ~ c ) ,  t h i s  gives 

Rv = 1 - Rv = (1 + BZv2)e-s (&a) 

e Re = - 23I 
2 RJr = s i n  Jr 

Solving f o r  v i n  Eq. (&a) f o r  a given Rv i s  d i f f i c u l t  because of i t s  

. form; however, v could be obtained i n  the  following manner. If Eq. (A2) i s  

wr i t t en  i n  c y l i n d r i c a l  coordinates, w e  obtain 
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where Vl = VI, V2 = Vr cos 8 and Vg = Vr s i n  8. Then as before t h e  new 

marginal d i s t r i b u t i o n s  are 

This gives,  as before, 

P 2 2 -  V1 - - In  R1 

2 2  P Vr = - In  Rr 

Tnen 

,2 vf vg 
- I n  R 1  - I n  Rr = - In  RIRr - - -  + - =  

2 -  2 2 
ra ra ra 

This means w e  can pick v by using two random numbers i n  Eq. (A9). 

APPENDIX B - DETAILS OF I O N  HISTORY 

W e  can def ine  v1 = VR cos y and v3 = VR s i n  y, while vli = VR COS ri 

and v3i = VR s i n  y i  (Fig. 9). Subs t i tu t ion  i n t o  Eq. (5a) o r  (5c) gives 

7 = y - Ti. The angle y can then be ca lcu la ted  from 

y = sin-’($) (B1) 

The component of ve loc i ty  v2 

tiAe at  which t h e  sample ion  w i l l  s t r i k e  t h e  upper o r  lower w a l l  after en ter -  

i ng  t h e  channel i s  

Also, t h e  pos i t i on  x1 a t  t i m e  T can be determined from Eq. (6a)  t o  be 

i s  unchanged by t h e  magnetic f i e l d ,  and t h e  

-rw = (1 - xZi)/vzi o r  -rW = -xZi/vzi (see Fig. 2 (3)).  

x1 - x l i  = v R E i n ( 7  + ri> - s i n  ri] = vR 2 s i n  5 7 COS ( yi + ;) (B2) 

It is  necessary t o  k n o w  t h e  time 

pos i t i on  x1  = e. This can be obtained from Eqs. (5c) and (sa) s i n c e  

TC t h a t  a molecule w i l l  reach some given 
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where t h e  + and - are used according t o  t h e  d i r ec t ion  the molecule is  

t rave l ing .  

t h e  t i m e ,  

scored can be obtained. From Eq. ( s a )  evaluated a t  t i m e  T ~ ,  t h e  posi-  

t i o n  xlw 

Subs t i t u t ion  i n t o  Eq. (B1) gives YE, which can be used t o  f i n d  

With t h e  t i m e  known, t h e  var ious parameters t h a t  are = YE - Ti. 

where t h e  molecule s t r i k e s  the w a l l  i s  obtained (5). 

However, t h e  sample molecule may reach a m a x i m u m  value of xl and then 

start t o  c i r c l e  back before  s t r i k i n g  the  w a l l .  

w i l l  occur i n  t h i s  case at 

‘max 

xl,maX 

This m a x i m u m  value of xi 

7- = X / Z  - ri (see Fig. 9, (4)). m e n  if 

i s  less than -rW, t he  molecule w i l l  t u r n  before  s t r i k i n g  t h e  w a l l ,  and 

i s  evaluated a t  T~~ (6).  If the  molecule passes a value of 

xf = E (7), i ts  important cha rac t e r i s t i c s  are t a l l i e d  (8). I n  t h e  present  

case E w a s  taken at  0, Z/4, 2/2, 32/4, and 2 .  It may pass t h e  exit plane 

( 9 )  a t  which point  it i s  t a l l i e d  and a new molecule i s  s t a r t ed .  

cu le  s t r i k e s  t h e  w a l l  t h i s  i s  scored i n  t h e  appropriate  w a l l  increment (U), 

and t h e  molecule i s  reemitted from t h i s  po in t  i n  a new d i r ec t ion  with a new 

ve loc i ty  (12). 

r e f l e c t i o n s  from t h e  w a l l s ,  and a new ve loc i ty  from a population based on a 

w a l l  temperature which i n  t h i s  case i s  taken equal t o  t h e  temperature of the 

reservoi r .  This means v, 8, 9 are obtained from Eqs. (2a) ,  (2b), and (Zc). 

If t h e  mole- 

The new d i r ec t ion  i s  picked f r o m  a population based on d i f fuse  

The components of ve loc i ty  from the lower w a l l  are now given by, (12a) 

vlh = v s i n  I# s i n  8 

V2A = v cos Jr  034) 

v3., = v s i n  Jr cos 6 

while f o r  t h e  upper w a l l s ,  (12b) 
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v = v s i n  Jr  s i n  6 
1lJ 

v2P = -v cos Jr  (E) 

v = v s i n  Jr  cos 8 
3P 

If t h e  molecule i s  r e f l ec t ed  from t h e  w a l l  with a pos i t i ve  

molecule goes through a similar procedure as j u s t  described (13). 

molecule i s  reemitted with a negative component of vl then T~ i s  compared 

with ‘tmin, t h e  t i m e  f o r  t he  molecule t o  reach i t s  minimum value of xl .  AS 

seen from Fig. 9 t h i s  i s  given by T~~ = (31r/2) - Yi (14). Then ~ 1 , ~ ~  i s  

ca lcu la ted  from whichever t i m e  i s  smaller ‘tmin o r  ~~~l (15). Again t h e  

pe r t i cen t  v d u e s  zre scnrei! each time the mnleri.i.le passes a scoring posi-  

t i o n  x1 = (16). If t h e  molecule leaves t h e  entrance it is scored (17 )  

and a new molecule i s  s t a r t ed ;  however, i f  it does not  leave through t h e  

entrance it may h i t  t h e  w a l l  (11) i n  which case it is  t a l l i e d  and reemitted 

as discussed before. If it does not h i t  t h e  w a l l  o r  leave t h e  channel, it 

w i l l  s tart  t o  c i r c l e  back, and now -cmaX = T~~ + x (Fig. 9 )  and t h e  usual. 

procedure continued (19). If it reaches i t s  m a x i m u m  value of xl and does 

not leave  t h e  end of t h e  channel o r  s t r i k e  the  w a l l ,  it w i l l  again c i r c l e  

back with 

before  (20). When DN molecules have been followed t h e  r e s u l t s  are pr in ted  

out  and t h e  program i s  stopped (21). 

vl-component, t h e  

If t h e  

T~~ = x + T~~ (Fig. 9 )  and t h e  molecule i s  followed as 

C 

D 

e 

f 

fM 

fi!i 

LIST OF SYMBOLS 

number of molecules represented by sample molecule, m/MN 

height  of channel 

charge of molecule 

ve loc i ty  d i s t r ibu t ion  of molecules 

Maxwellian veloci ty  d i s t r i b u t i o n  

Maxwellian d i s t r i b u t i o n  of molecules moving i n  pos i t i ve  xl-direction 
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P, 

1 

M 

m 

% 

N 

n 

P 

R 

ra 

S 

T 

scoring cross sec t ion  along xl 

l eng th  of channel divided by height 

mass of molecule 

mass flow rate pe r  u n i t  area 

mass flow i n  from l e f t  reservoi r ,  pL/(2rrl/z~) 

number of trial molecules entering channel pe r  u n i t  t i m e  pe r  

u n i t  area 

number of sample molecule 

pres  su re  

quant i ty  being ca r r i ed  by sample ion 

random number between 0 and 1 

gas constant 

Larmor rad ius  divided by channel height, (f3aO)" 

number of molecules passing through increment 

temperature 

components of mean flow 

molecular ve loc i ty  

dimensionless molecular velocity,  v / b  

dimensionless ve loc i ty  i n  xl, x3-plane 

coord imtes  divided by channel height D 

s ec t ion  of channel 

parameter ( 2RT) -1/2 

angle Eq. (Bl) 

po la r  angle 

dens i ty  

t i m e  mul t ip l ied  by cyclotron frequency c.u 

cone angle 
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cu eB2/M cyclotron frequency 

Subscripts:  

i i n i t i a l  t i m e ,  T = 0 

L l e f t  r e se rvo i r  

I= l oca t ion  along xl 

M marginal d i s t r i b u t i o n  

m Maxwellian 

P increment number along x2 

9 increment number along XI 

W w a l l  

h , p  lower o r  upper w e ,  respec t ive ly  

Q i n t e g r a t i o n  over all v e l o c i t i e s  i n  p lus  x2-direction 

Superscr ip ts :  

(-) mean value, J C  
+- i n  p o s i t i v e  xl-direction 

- i n  negative xl-direction 

( ' ) undirected component 
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(b) Channel length divided by height, 2 = 1.0. 
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Figure 5. - Average transverse flw across channel. 

61- 

0 .1 .2 .3  .4 .5 . 6  
W4av  
‘“L - mR 

(bl Channel length divided by height, 1 - 1.0 and 5. 
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Figure 6. - Density and energy distributions in channel. 
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Figure 9. - Velocity relations. 


